Az írásbeli vizsga időtartama: 240 perc Time allowed for the examination: 240 minutes
JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ MARKSCHEME
OKTATÁSI MINISZTÉRIUM MINISTRY OF EDUCATION

Instructions to examiners

Formal requirements:

- Mark the paper in ink, different in colour from the one used by the candidate. Indicate the errors, incomplete solutions, etc in the conventional way.
- The first one of the rectangles under each problem shows the maximum attainable score on that problem. The points given by the examiner are to be entered in the rectangle next to that.
- If the solution is perfect, it is enough to enter the maximum scores in the appropriate rectangles.
- If the solution is incomplete or incorrect, please indicate the individual subtotals on the paper, too.

Assessment of content:

- The markscheme contains more than one solution for some of the problems. If the solution by the candidate is different, allocate the points by identifying the parts of the solution equivalent to those of the one given in the markscheme.
- The subtotals in the markscheme can be further divided, but the scores awarded should always be whole numbers.
- If it is clear that the reasoning and the final answer are both correct, you may award the maximum score even if the solution is less detailed than the one in the markscheme.
- If there is a calculation error or inaccuracy in the solution, only take off the points for that part where the error is made. If the reasoning remains correct and the error is carried forward, the points for the rest of the solution should be awarded.
- In the case of a principal error, no points should be awarded at all for that section of the solution, not even for steps that are formally correct. (These logical sections of the solutions are separated by double lines in the markscheme.) However, if the wrong information obtained owing to the principal error is carried forward to the next section or in the next part of the problem and used correctly, the maximum score is due for the next part.
- Where the markscheme shows a unit in brackets, the solution should be considered complete without that unit as well.
- If there is more than one attempt to solve a problem, assess only one of them (the one that is worth the largest number of points).
- Do not give extra points (i.e. more than the score due for the problem or part of problem).
- Do not take off points for steps or calculations that contain errors but are not actually used by the candidate in the solution of the problem.
- Assess only four out of the five problems in Section II. The candidate was requested to indicate in the appropriate square the number of the problem not to be assessed and counted in their total score. Should there be a solution to that problem, it does not need to be marked. However, if it is still not clear which problem the candidate does not want to be assessed, assume automatically that it is the last one in the question paper, and do not assess that problem.

I.

b)		3 points	3 points should be awarded for determining any trigonometric function of β (e.g. from slope, cosine rule, etc. $)$
point C.			
From the right-angled triangle $C T B, \tan \beta=0.1$.			

2.

a)

3.		
If the second term of the arithmetic progression is a_{2} and its difference is d, then $a_{2}-d+a_{2}+a_{2}+d=60,$	2 points	Altogether 2 points should be awarded for expressing the first condition using two variables.
and hence $a_{2}=20$.	1 point	Or $a_{1}+d=20$.
The first three terms of the geometric progression are $84-d ; 20 ; 20+d$,	1 point	Altogether 3 points should be awarded for reaching a quadratic equation.
$\begin{aligned} & \text { therefore }(84-d)(20+d)=400, \\ & \text { or } \frac{20}{84-d}=\frac{20+d}{20} . \end{aligned}$	2 points	
Rearranging the equation $d^{2}-64 d-1280=0$.	2 points	For rearranging the equation.
Hence $d_{1}=-16$ or $d_{2}=80$.	2 points	For solving the equation.
$d_{1}=-16$ is not a solution because the arithmetic progression is increasing.	1 point	This is the 1 point lost if the candidate does not reject this case and gets two solutions.
For $d_{2}=80$ the first three terms of the arithmetic progression are $-60,20,100$; which do give a correct solution.	1 point	1 point for correctly listing the three numbers.
From this, the three numbers 4, 20, 100 can be calculated, and they are indeed the first three terms of a geometric progression.	1 point	1 point for correctly listing the three numbers.
Total:	13 points	

b)	2 points	Full credit should be given for any other form of the range.	
The range is [3; 5].	Total:	2 points	

c)

The solid of revolution is the frustrum of a cone.
The radii of the base circles are $R=5 ; r=3$. The height of the object is $h=4$.
The volume of the frustrum of a cone is $V=\frac{h \pi}{3}\left(r^{2}+r R+R^{2}\right)=\frac{4 \pi}{3}(25+15+9)=$ $=\frac{196 \pi}{3} \approx 205.25$.

The 2 points should also be awarded if no approximate values are calculated.

Total: 8 points
II.

Out of problems 5 to 9 , do not assess the one indicated by the candidate.

a)		No sketch is required for the solution, full credit can also be achieved without the use of a diagram.
The Venn diagram above shows the numbers of the restaurants in the various categories.		
Since only one restaurant provides all three services, therefore 1 should be written in the intersection of the three sets.	1 point*	

b)		
From the number of "vegetarian places"	2 points	
$y=5-x$,		
from that of places with table service: $z=x$.		
Hence the total number of restaurants is $11+2 x+5-x=18$,	1 point	

from which $x=2$,	1 point	
therefore $y=3$ (and $z=2$).	1 point	The value of z is not needed.
Thus $y+1=4$ restaurants serve vegetarian meals.	1 point	
	Total:	$\mathbf{6}$ points

c)

There are 18 restaurants altogether, 11 of which serve breakfast. Picking from box A, containing all the names, the chance of winning is
$\frac{11}{18} \approx 0.61$

Out of the 8 self-service restaurants 6 provide breakfast, therefore the chance of winning by picking from box B is $\frac{6}{8}=0.75$, therefore it is better to pick from box B.

		2 points should be awarded for any correct form.				
2 points			$	$	2 points	2 points should be awarded for any correct form.
:---	:---					
1 point						

6.

a)

Substituting the value $x=-2$:
$f(-2)=(p-3.5) \cdot 4-4(p-2)+6=$
$=4 p-14-4 p+8+6=0$.

	2 points	These 2 points should also be given if the candidate starts the solution with part b, assumes that $p \neq 3.5$, solves the equation, finds -2 as one of the roots and shows that it is also aroot for $p=3.5$.
Total:	2 points	

b)		
For $p=3.5$ the equation is not quadratic, there cannot be two roots, therefore $p \neq 3.5$.	1 point	
The roots of the equation are $x_{1,2}=\frac{-2(p-2) \pm \sqrt{4(p-2)^{2}-24(p-3.5)}}{2(p-3.5)}=$	1 point	
$=\frac{-p+2 \pm \sqrt{p^{2}-10 p+25}}{p-3.5}=$	1 point	
$=\frac{-p+2 \pm(p-5)}{p-3.5} \Rightarrow$	2 points	
$x_{1}=\frac{-3}{p-3.5}$ and $x_{2}=-2$	1 point	Altogether 5 points for the roots of the parametric quadratic equation.
The inequality $\frac{-3}{p-3.5}>1$ is to be solved.		

Rearranging the inequality $\frac{-p+0.5}{p-3.5}>0$.	2 points	
	2 points 2 points	
The inequality is satisfied for $0.5<p<3.5$.	2 points	Altogether 8 points should be awarded for the solution of the inequality.
Total:	14 points	
2 points should be awarded if the candidate only shows that, with $p \neq 3.5$, the sufficient condition for the existence of the two distinct roots is $p \neq 5$.		

| Note: The graphical solution of the last section is: | | |
| :--- | :--- | :--- | :--- |
| Using the monotonic nature of the function $x_{1}(p)$
 (demonstrating it by using a graph): | | |
| Equality holds for $0.5<p<3.5$. | 6 points | 4 points for the graph of $x_{1}(p)$.
 2 points for calculating the
 point intersection. (Also 2
 points if the candidate reads the
 abscissa of the intersection and
 then checks it correctly. If the
 candidate reads it incorrectly
 or does not check it only 1 point
 should be given. $)$ |
| 2 2 points for stating the solution. | | |

7.		
We have the square roots of perfect squares: $\sqrt{(\sin x-2)^{2}}+\sqrt{(\sin x+2)^{2}}=\sqrt{(\sin x+3.5)^{2}} .$	2 points	For recognising the perfect squares.
Taking the square roots: $\|\sin x-2\|+\|\sin x+2\|=\|\sin x+3.5\|$	2 points	A maximum of 4 points should be awarded altogether if the candidate omits the absolute values in taking square roots.
Since $-1 \leq \sin x \leq 1$, therefore: $\left.\begin{array}{l}\sin x+2>0 \\ \sin x-2<0 \\ \sin x+3.5>0\end{array}\right\}$ for $\forall x \in \mathbf{R}$.	3 points	3 points for examining the ranges of the functions. Altogether 5 points for the correct treatment of the absolute values.
Therefore by eliminating the absolute value bars: $-\sin x+2+\sin x+2=\sin x+3.5$.	2 points	

$\sin x=\frac{1}{2} .$		1 point			
Hence $x_{1}=\frac{\pi}{6}+2 k \pi$,		2 points	*		
or $x_{2}=\frac{5 \pi}{6}+2 k \pi$,		2 points			
where $k \in \mathbf{Z}$.		1 point			
Checking: both sets of roots satisfy the o	l equation.	1 point			
	Total:	16 points			
* Note : $x_{1}=30^{\circ}+k \cdot 360^{\circ}(1 \text { point }) ;$ or $x_{1}=30^{\circ} ;$ or $x_{1}=30^{\circ}+k \cdot 2 \pi ;$	$\begin{aligned} & x_{2}=150^{\circ}+k \\ & x_{2}=150^{\circ} \\ & x_{2}=150^{\circ}+k \end{aligned}$	$\begin{array}{r} \cdot 360^{\circ}(1 \mathrm{p} \\ (1 \mathrm{po} \\ \cdot 2 \pi(1 \mathrm{po} \end{array}$	int), int) it);	$k \in \mathbf{Z}$ $k \in \mathbf{Z}$	(1 point) (1 point)

8.				
a)				
The total the labour force is $8500 \cdot 1.003 \approx 8526$ (thousand people).			2 points	
The unemployment rate is the same, therefore the number of the unemployed is $8526 \cdot \frac{595}{8500} \approx 597$ (thousand people).			2 points	
The number of people employed in the service sector is $5015 \cdot 1.02=5115$ (thousand people).			2 points	
The number of people employed in agriculture is $8526-597-1926-5115=888$ (thousand people).			1 point	
2003. (thousand people) 2004. (thousand people)				Maximum 5 points can be awarded for not rounding to the nearest thousand. I point should be subtracted per rounding error.
Agriculture	1020	888		
Industry	1870	1926		
Services	5015	5115		
Unemployed	595	597		
Altogether	8500	8526		
		Total:	7 points	

b)						
The total number of people employed in 2003 -is 7905 thousand people.	1 point	No point for the statement of 7905 on its own.				
The central angle of the sector representing people working in agriculture according to their proportion is $\frac{1020}{7905} \cdot 360^{\circ} \approx 46^{\circ}$.	1 point					
The central angle of the sector representing people working in industry is $\frac{1870}{7905} \cdot 360^{\circ} \approx 85^{\circ}$.	1 point should be given for					
stating each central angle,						
details of the calculation itself						
are not required.			$	$	(The central angle of the sector representing people working in the service sector is 5015 7905 $360^{\circ} \approx 228^{\circ}$. .)	
:---	:---					

c)					
$\frac{888}{1020} \approx 0.87$.	2 points				
The decrease is approximately 13 percent.	2 points				
Total:				4 points	

9.		

$*$ $t^{\prime}(x)=\frac{168}{7}-\frac{8}{7} x$	1 point	
The derivative is zero for $x=21$.	1 point	
$t^{\prime \prime}(x)=-\frac{8}{7}<0$, therefore $x=21$ is a local maximum point.	1 point	
$21 \in] 0 ; 42[$, therefore the maximum is indeed at $\mathrm{x}=21$.	1 point	

